

# SMDL48 Series

## High Efficiency Step Down LED Driver



### Features

- RoHS-compliant 24 Pin DIL Package
- Constant Current Output ( ±7% Output Current Accuracy )
- LED Driver Current 150 / 250 / 300 / 350 / 500 / 600 / 700 / 1000 mA
- Power LED Driver
- Wide Input Voltage Range: 7V to 60V ( 65V for 0.5sec )
- Output Power 9 / 14 / 17 / 20 / 29 / 34 / 40 / 48W
- Driver LED Strings of up to 57V ( 2V to 57V )
- High Efficiency ( up to 97% )
- PWM/Digital Dimming and Analog Voltage Dimming
- Open and Short LED Protection
- -40°C ~ 85°C Operation Temperature Range
- With MLCC Capacitors only

**S**MDL48 Series is a high efficiency step-down converter optimized to drive high current LEDs. The control algorithm allows highly efficient and accurate LED current regulation. The device operates from an input 7Vdc to 60Vdc and provides an externally adjustable output current up to 1000mA and output power up to 48 watts. Compact size of DIL24 allows designer to integrate this driver together with LED module. UL 94V-0 grade molded case with high grade filling material provide excellent fire proof characters.

Typical at  $T_a = +25^\circ\text{C}$ , nominal input voltage, rated output current unless otherwise specified.

| Electrical Specifications:             |                                   | Dimming Control and ON/OFF Control (Leave Open if Not Used):           |                                                                    |
|----------------------------------------|-----------------------------------|------------------------------------------------------------------------|--------------------------------------------------------------------|
| Input Voltage (Vdc)                    | 7V ~ 60V, 48Vdc Nominal           | $V_{\text{ADJ}}$ Pin Input Voltage Range                               | 0V to 1.25V                                                        |
| Input Filter                           | Capacitor                         | $V_{\text{ADJ}}$ Pin Drive Current ( $V_{\text{ADJ}} = 1.25\text{V}$ ) | <1mA                                                               |
| Output Voltage Range (Vin = 60V)       | 2V to 57V                         | Analogue Dimming                                                       |                                                                    |
| Output Current Range (Vin - Vout > 3V) | See table                         | Adjust Output Current (Vin - Vout < 30V)                               | 25% to 100%                                                        |
| Output Current Accuracy                | See table, max.                   | Control Voltage Range Limits                                           |                                                                    |
| Output Power                           | See table, max.                   | On                                                                     | 0.3V < $V_{\text{ADJ}} < 1.25\text{V}$                             |
| Ripple and Noise (20 MHz bandwidth)    | See table, max.                   | Off                                                                    | $V_{\text{ADJ}} < 0.15\text{V}$                                    |
| Efficiency                             | 97%, max.                         | PWM Dimming                                                            |                                                                    |
| Capacitive Load                        | 470 $\mu\text{F}$ , max.          | Recommended Maximum Operation Frequency                                | 1KHz                                                               |
| Operating Frequency                    | 20 kHz ~ 500 kHz                  | Adjust Output Current                                                  | 0% to 100%                                                         |
| Short Circuit Protection               | Regulated at Rated Output Current | Remote ON/OFF                                                          |                                                                    |
| Temperature Coefficient                | $\pm 0.03\%/\text{C}$ , max.      | DC/DC ON                                                               | 0.3V < $V_{\text{ADJ}} < 1.25\text{V}$ or open circuit             |
| Thermal Impedance (Natural Convection) | +30°C/W                           | DC/DC OFF (Shutdown)                                                   | $V_{\text{ADJ}} < 0.15\text{V}$ or Short circuit pin 2,3 and pin 4 |
| Safety Standard (designed to meet)     | IEC / EN 60950-1                  | Quiescent Input Current in Shutdown Mode (Vin = 60V)                   | 100 $\mu\text{A}$ , max.                                           |

| Environmental Specifications                       |                                     |
|----------------------------------------------------|-------------------------------------|
| Operating Temperature Range                        | -40°C to +85°C (See Derating Curve) |
| Storage Temperature Range                          | -40°C to +125°C                     |
| Humidity                                           | 95% rel H                           |
| Maximum Case Temperature                           | +110°C                              |
| Cooling                                            | Nature Convection                   |
| Reliability Calculated MTBF(MIL-HDBK-217 F)        | >950 Khrs                           |
| Soldering Temperature (1.5mm from case 10sec max.) | +260°C, max.                        |

| Physical Specifications |                                                  |
|-------------------------|--------------------------------------------------|
| Case Material           | Non-Conductive Black Plastic(UL94V-0 rated)      |
| Potting Material        | Epoxy (UL94V-0 rated)<br>Silicon (UL94V-0 rated) |
| Pin Material            | Φ0.5mm Brass Solder-coated                       |
| Weight                  | 17.7g                                            |
| Dimensions              | 1.25"x0.80"x0.49"                                |

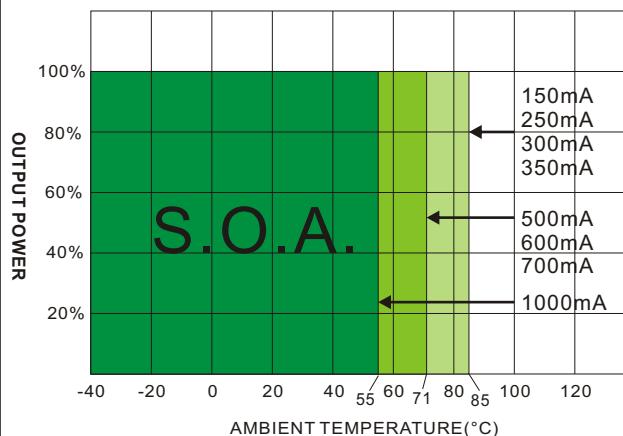
| EMC SPECIFICATIONS                 |                    |
|------------------------------------|--------------------|
| EMI Radiated & Conducted Emissions | EN 55015 (CISPR22) |
| EMS Immunity EN 61547              |                    |
| IEC 61000-4-2                      | Perf. Criteria A   |
| IEC 61000-4-3                      | Perf. Criteria A   |
| IEC 61000-4-4                      | Perf. Criteria A   |
| IEC 61000-4-5                      | Perf. Criteria A   |
| IEC 61000-4-6                      | Perf. Criteria A   |
| IEC 61000-4-8                      | Perf. Criteria A   |

### NOTE

1. Reversed power source damages the circuit, No connection is allowed between input ground and output .
2. DO NOT operate the driver over output power.
3. Leave pin  $V_{\text{ADJ}}$  open if not in use, ground pin to shut down the converter. Connecting  $V_{\text{ADJ}}$  to Vin damages the circuit.
4. Maximum output open voltage is equal to input voltage .
5. Input filter components (C1, C2, L, C3) are used to help meet conducted emissions requirement for the module.
6. The test Conditions of IEC 61000-4-5 is  $\pm 0.5\text{kV}$  input DC power ports.

**PART NUMBER STRUCTURE**

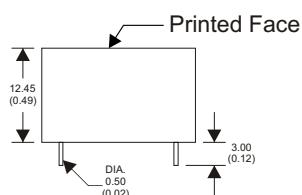
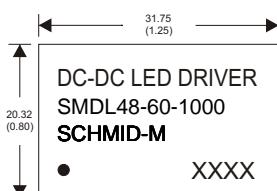
**SMDL48 - 60 - 1000**


Series Name

Input Max. Voltage

Output Current

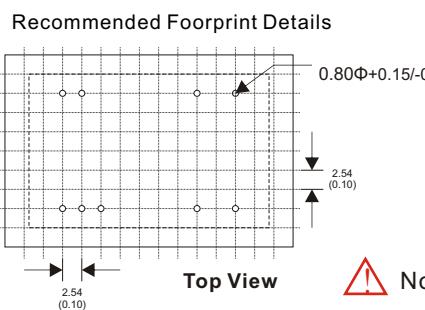
150 - 150mA  
250 - 250mA  
300 - 300mA  
350 - 350mA  
500 - 500mA  
600 - 600mA  
700 - 700mA  
1000 - 1000mA



**Derating Curve**



**MODEL SELECTION GUIDE**

| MODEL NUMBER   | INPUT               | OUTPUT              |              | OUTPUT Current Accuracy (% , max.) | OUTPUT Power (W, max.) | EFFICIENCY @ FL (% , max.) | Ripple and Noise (mVp-p, max.) | Capacitor Load @FL (μF, max.) |
|----------------|---------------------|---------------------|--------------|------------------------------------|------------------------|----------------------------|--------------------------------|-------------------------------|
|                | Voltage Range (Vdc) | Voltage Range (Vdc) | Current (mA) |                                    |                        |                            |                                |                               |
| SMDL48-60-150  | 7 - 60              | 2 ~ 57              | 150          | ±8                                 | 9                      | 60 - 97                    | 150                            | 470                           |
| SMDL48-60-250  | 7 - 60              | 2 ~ 57              | 250          | ±7                                 | 14                     | 65 - 97                    | 200                            | 470                           |
| SMDL48-60-300  | 7 - 60              | 2 ~ 57              | 300          | ±6                                 | 17                     | 67 - 97                    | 250                            | 470                           |
| SMDL48-60-350  | 7 - 60              | 2 ~ 57              | 350          | ±5                                 | 20                     | 66 - 97                    | 300                            | 470                           |
| SMDL48-60-500  | 7 - 60              | 2 ~ 57              | 500          | ±5                                 | 29                     | 69 - 97                    | 400                            | 470                           |
| SMDL48-60-600  | 7 - 60              | 2 ~ 57              | 600          | ±5                                 | 34                     | 69 - 97                    | 450                            | 470                           |
| SMDL48-60-700  | 7 - 60              | 2 ~ 57              | 700          | ±5                                 | 40                     | 69 - 97                    | 500                            | 470                           |
| SMDL48-60-1000 | 7 - 60              | 2 ~ 48              | 1000         | ±5                                 | 48                     | 64 - 97                    | 800                            | 470                           |


**MECHANICAL DIMENSION**



**24 Pin DIL Package**

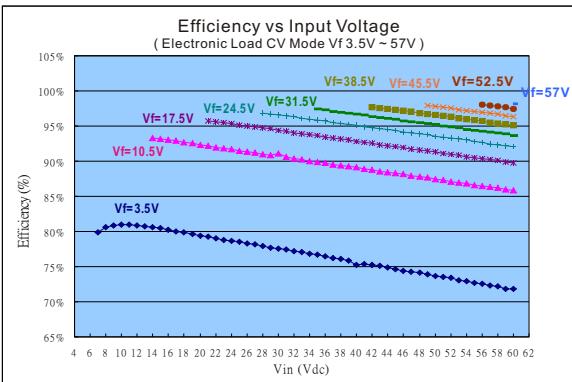
Notes : All dimensions are typical in millimeters ( inches ).

1. Pin diameter:  $0.5 \pm 0.05$  (  $0.02 \pm 0.002$  )
2. Pin pitch and length tolerance:  $\pm 0.35$  (  $\pm 0.014$  )
3. Case Tolerance:  $\pm 0.5$  (  $\pm 0.02$  )

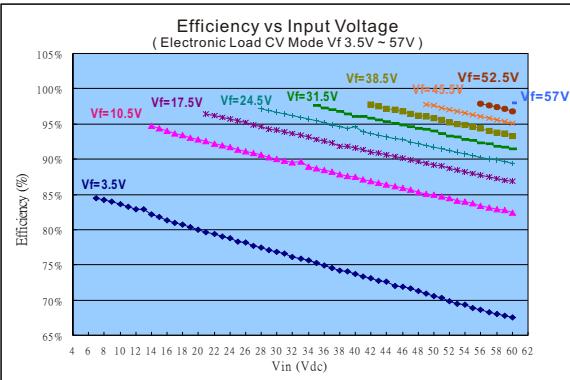


| Pin # | CONNECTIONS |                        |
|-------|-------------|------------------------|
| 2,3   | - V Input   | - DC Supply            |
| 4     | VADJ        | PWM/ON/OFF or not used |
| 9,11  | - V Output  | LED Cathode Connection |
| 14,16 | +V Output   | LED Anode Connection   |
| 22,23 | +V Input    | +DC Supply             |

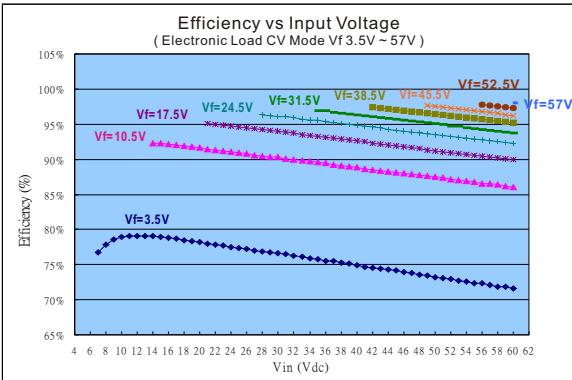



No connection is allowed between input and output

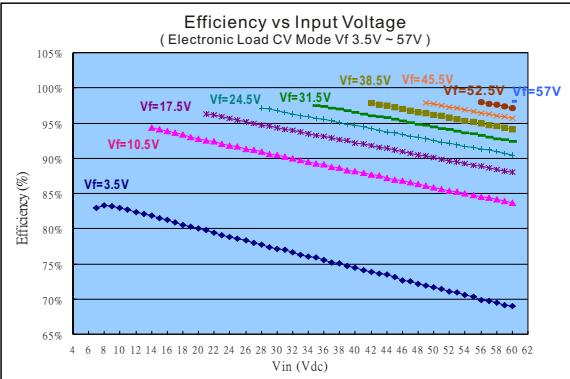
**Typical Operating Conditions**


**SMDL48-60-150**

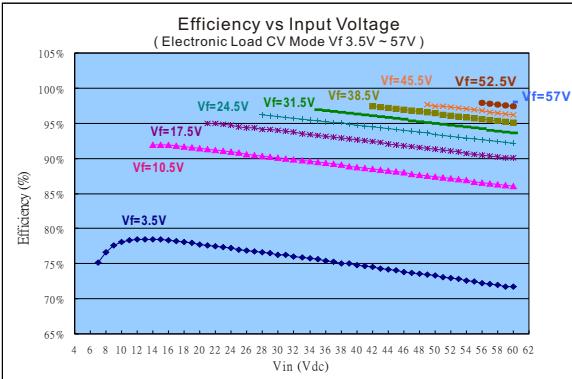



**SMDL48-60-500**

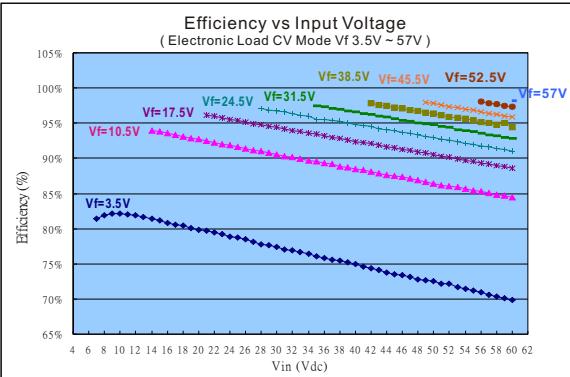



**SMDL48-60-250**

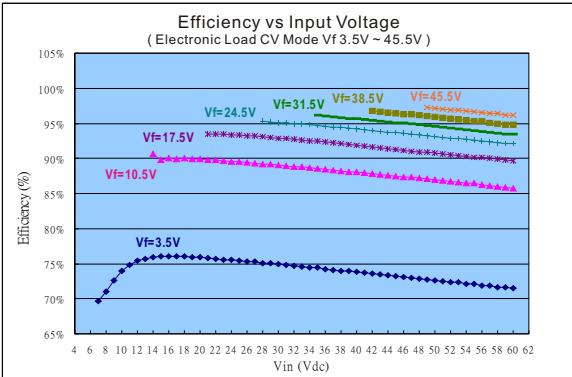



**SMDL48-60-600**




**SMDL48-60-300**

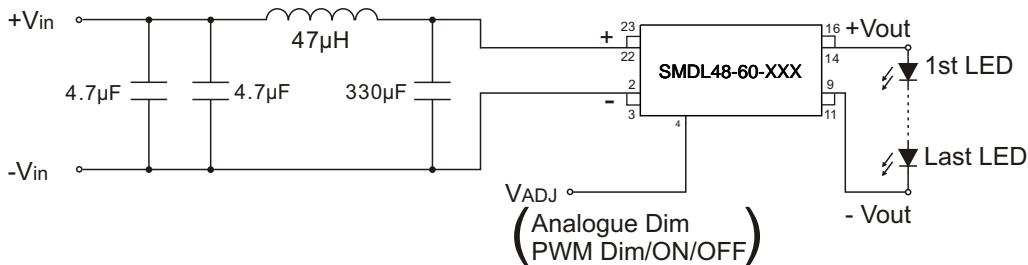



**SMDL48-60-700**



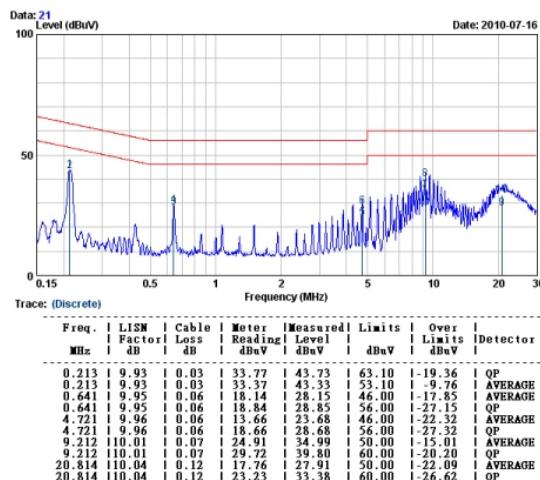
**SMDL48-60-350**



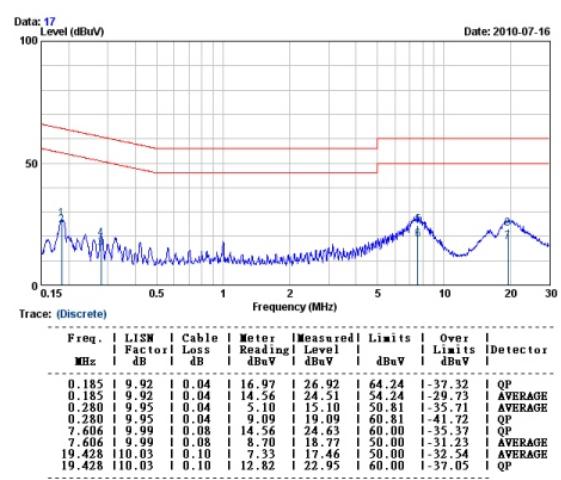

**SMDL48-60-1000**



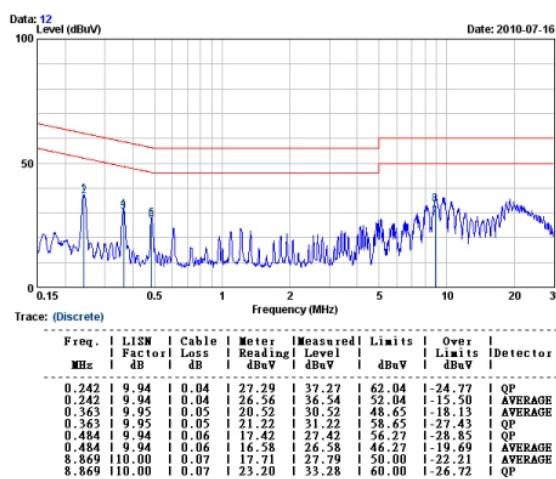
**EMC Characteristics meet EN55022**


**EMC Countermeasures Suggestion**

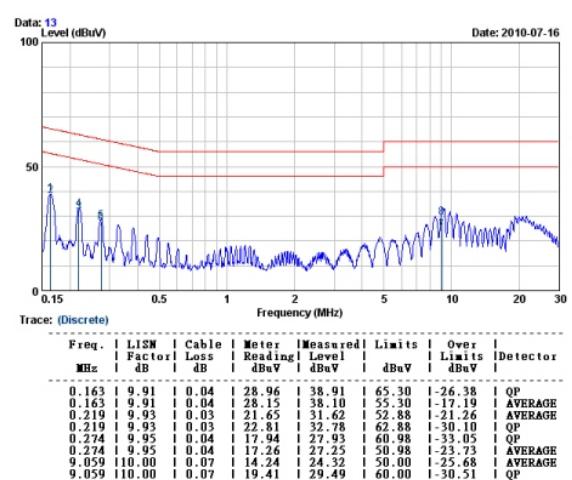
Input filter components (C1, C2, L, C3) are used to help meet conducted emissions requirement for the module. These components should be mounted as close as possible to the module; and all leads should be minimized to decrease radiated noise.



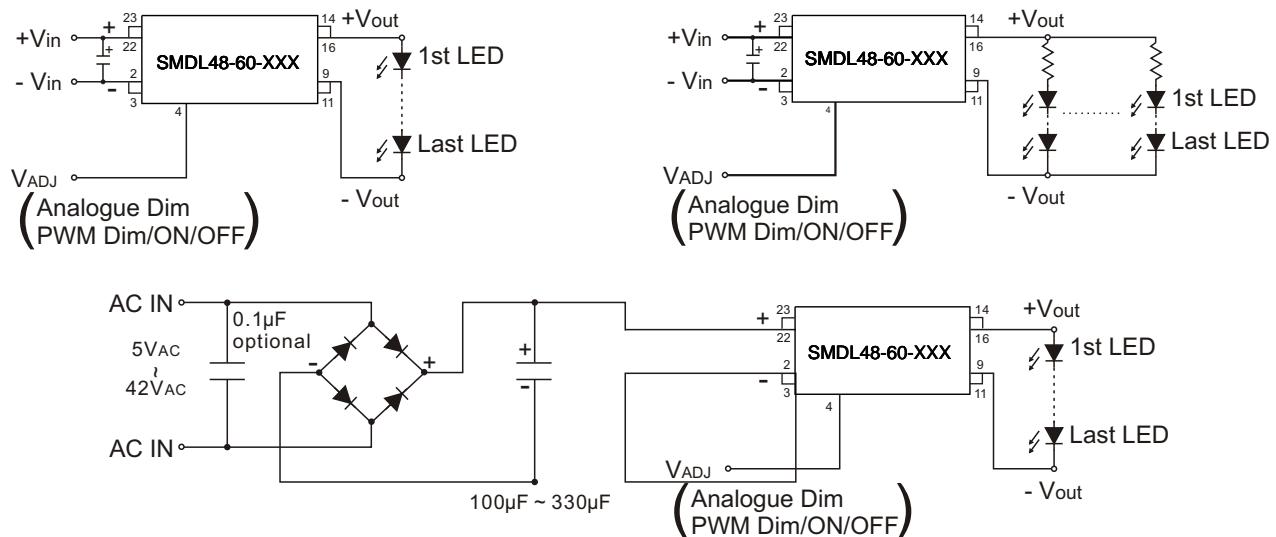

**Conducted Emissions Test**


Vin=60V Vout=30V( LED Load Vf=3.3V , 9LED=30V )



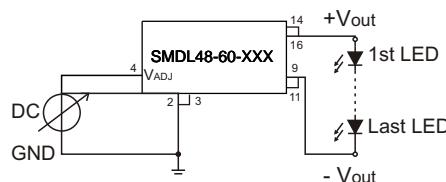

Vin=12V Vout=3.3V( LED Load Vf=3.3V , 1LED=30V )



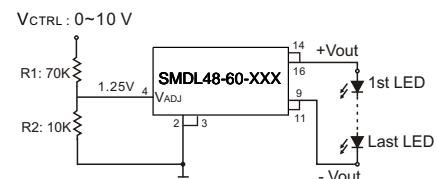
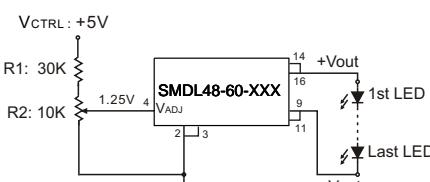

Vin=60V Vout=48V( LED Load Vf=3.3V , 14LED=15V )



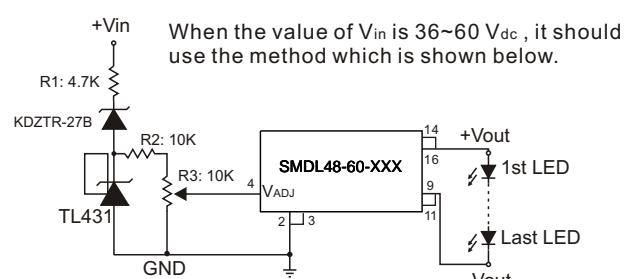
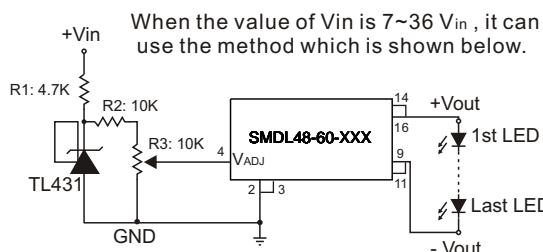
Vin=7V Vout=3.3V( LED Load Vf=3.3V , 1LED=30V )




Typical Application

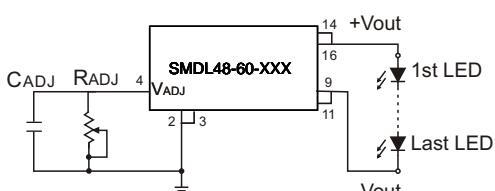

Output Current Adjustment By External DC Control Voltage ( $V_{CTRL}$ )



$$V_{ADJ} = V_{CTRL} \quad [\text{If } V_{CTRL} = 0 \sim 1.25 \text{ V}_d]$$



$$V_{ADJ} = \frac{R_2}{R_1 + R_2} \times V_{CTRL} \quad [\text{If } V_{CTRL} > 1.25 \text{ V}_d]$$




$$V_{ADJ} = \frac{R_3}{R_2 + R_3} \times 2.5 \quad [\text{If } V_{CTRL} = V_{in}]$$



The nominal output current ( $I_{out, nom}$ ) is given by:  $I_{out, nom} \approx I_{out} \times \frac{V_{ADJ}}{1.25}$

Resistor dimming

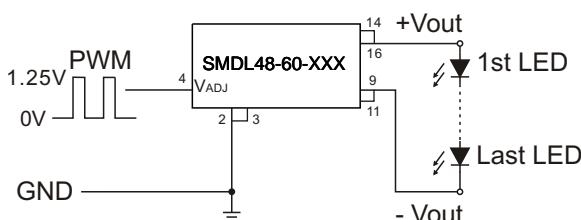
By connecting a variable resistor between ADJ and GND, simple dimming can be achieved. Capacitor  $C_{ADJ}$  is optional for better AC mains interference and HF noise rejection. Recommend value of  $C_{ADJ}$  is  $0.22\mu\text{F}$ .



The current output  $I_{out, nom}$  can be determined using the equation:

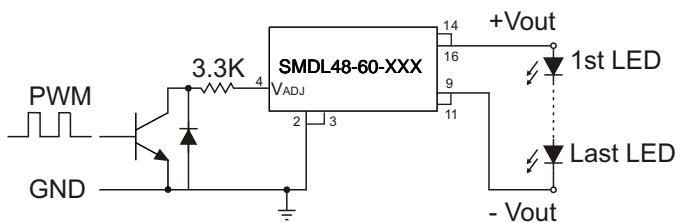
$$I_{out, nom} = \frac{I_{out} \times R_{ADJ}}{(R_{ADJ} + 50K)}$$

If the value of  $R_{ADJ}$  is 0 to 2M ohm, the maximum adjust range of output current is 25% to 90%. (For  $V_{in} - V_{out} < 30\text{V}$ )


Typical Application

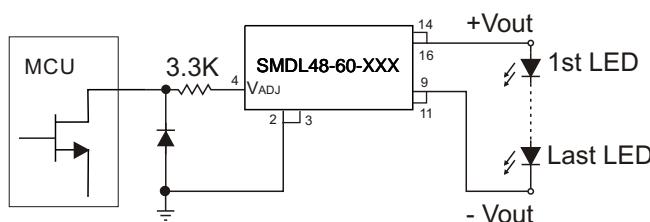
**Output Current Adjustment By PWM Control**

**Directly driving ADJ input**


A Pulse Width Modulated (PWM) signal with duty cycle DPWM can be applied to the ADJ pin, as shown below

$$I_{out,nom} \approx I_{out} \times DPWM \quad [\text{If PWM frequency} < 200\text{Hz, for } 0.1 < DPWM < 1]$$

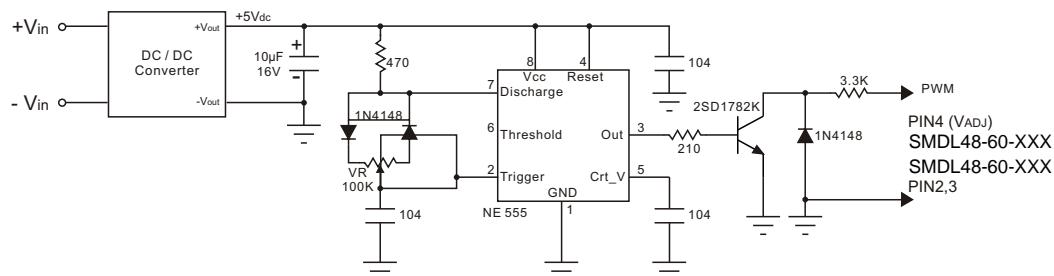



**Driving the ADJ input via open collector transistor**

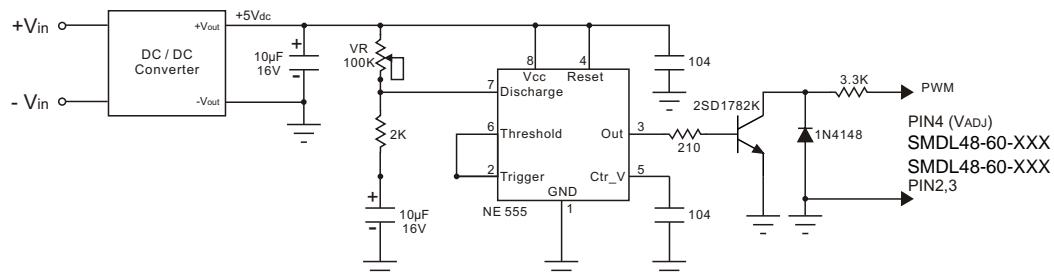
The diode and resistor suppress possible high amplitude negative spikes on the ADJ input resulting from the drain-source capacitance of the transistor. Negative spikes at the input to the device should be avoided as they may cause errors in output current, or erratic device operation.



**Driving the ADJ input from a microcontroller**


Another possibility is to drive the device from the open drain output of a microcontroller. The diagram below shows one method of doing this:




The diode and resistor suppress possible high amplitude negative spikes on the ADJ input resulting from the drain-source capacitance of the FET. Negative spikes at the input to the device should be avoided as they may cause errors in output current, or erratic device operation.

**Output Current Adjustment By PWM Control (Dimming)**

To avoid visible flicker the PWM signal must be greater than 100Hz.



**Output Current Adjustment By PWM Control (Flash)**

